HPRLP.jl Documentation

A Julia implementation of the Halpern Peaceman-Rachford (HPR) method for solving linear programming (LP) problems on the GPU.

Overview

HPRLP.jl is a high-performance linear programming solver that leverages GPU acceleration to solve large-scale LP problems efficiently. It implements the Halpern Peaceman-Rachford splitting method with adaptive restart strategy and penalty parameter selection.

Features

  • GPU Acceleration: Native CUDA support for solving large-scale problems
  • CPU Support: Support CPU mode when GPU is not available
  • Multiple Inputs:
    • Direct API with matrix inputs
    • MPS file format support
    • JuMP integration via MOI wrapper
  • Flexible Scaling: Ruiz, Pock-Chambolle, and scalar scaling methods
  • Adaptive Algorithms: Automatic restart strategy and penalty parameter selection

Problem Formulation

HPRLP solves linear programming problems of the form:

\[\begin{array}{ll} \underset{x \in \mathbb{R}^n}{\min} \quad & \langle c, x \rangle \\ \text{s.t.} \quad & L \leq A x \leq U, \\ & l \leq x \leq u . \end{array}\]

where:

  • $x \in \mathbb{R}^n$ is the decision variable
  • $c \in \mathbb{R}^n$ is the objective coefficient vector
  • $A \in \mathbb{R}^{m \times n}$ is the constraint matrix
  • $L, U \in \mathbb{R}^m$ are lower and upper bounds on constraints
  • $l, u \in \mathbb{R}^n$ are lower and upper bounds on variables

Quick Start

Installation

From GitHub (recommended for applications):

using Pkg
Pkg.add(url="https://github.com/PolyU-IOR/HPR-LP")

Locally (recommended for development):

git clone https://github.com/PolyU-IOR/HPR-LP.git
cd HPR-LP
julia --project=. -e 'using Pkg; Pkg.instantiate()'

Simple Example

using HPRLP
using SparseArrays

# Define LP: min -3x₁ - 5x₂ s.t. x₁ + 2x₂ ≤ 10, 3x₁ + x₂ ≤ 12, x ≥ 0
A = sparse([-1.0 -2.0; -3.0 -1.0])
c = [-3.0, -5.0]
AL = [-10.0, -12.0]
AU = [Inf, Inf]
l = [0.0, 0.0]
u = [Inf, Inf]

# Build and solve
model = build_from_Abc(A, c, AL, AU, l, u)

params = HPRLP_parameters()
params.stoptol = 1e-9  # Set stopping tolerance

result = optimize(model, params)

println("Optimal value: ", result.primal_obj)
println("Solution: x = ", result.x)

With JuMP

using JuMP, HPRLP

model = Model(HPRLP.Optimizer)

@variable(model, x1 >= 0)
@variable(model, x2 >= 0)
@objective(model, Min, -3x1 - 5x2)
@constraint(model, x1 + 2x2 <= 10)
@constraint(model, 3x1 + x2 <= 12)

set_attribute(model, "stoptol", 1e-9)  # Set stopping tolerance

optimize!(model)
println("Objective: ", objective_value(model))
println("x1 = ", value(x1), ", x2 = ", value(x2))

Documentation Contents

Citation

If you use HPRLP in your research, please cite:

@article{chen2025hpr,
  title={HPR-LP: An implementation of an HPR method for solving linear programming.},
  author={Chen, Kaihuang and Sun, Defeng and Yuan, Yancheng and Zhang, Guojun and Zhao, Xinyuan},
  journal={Mathematical Programming Computation},
  pages={1--28},
  year={2025},
  publisher={Springer}
}

License

HPRLP.jl is licensed under the MIT License. See LICENSE for details.